
e

e

e

© ARM 2016

Practical real-time
operating system security
for the masses

Milosch Meriac

ARM TechCon

Principal Security Engineer

github.com/ARMmbed/uvisor

25th October 2016

© ARM 2016 2

e

Why is
microcontroller security

so hard ?

© ARM 2016 3

e

e

e

Who can’t suppress snickering on

seemingly dumb security bugs in other
people’s product? It’s easy and delightful
to declare developers of failed products
as incompetent.
As old stuff has old bugs – we won’t

run out of entertainment anytime soon.

Device lifetime

The security of a system is dynamic

over its lifetime. Lifetimes of home
automation nodes can be 10+ years.

Attack scale well

The assumption of being hacked at

some point requires a solid
mitigation strategy for simple,
reliable and inexpensive updates.
Do our defenses scale with our
attackers?

Assume you can’t prevent it

Value of bugs is expressed by value

= number_of_installations x
device_value. Increased value and
large deployments drive attackers -
especially in the IoT.
Massively parallelized security

researchers/attackers vs. limited
product development budgets and
time frames.

Security
+ time
= comedy

If a product is successful,
it will be hacked

© ARM 2016 4

e

e

e

A flat address space as the result of lack

of a memory management units (MMU)
does not justify the absence of security.
Many microcontrollers like ARM
Cortex-M3/M4 provide a hardware
memory protection unit (MPU) instead.

No separation

Flat memory models and ignorance

of MPUs blocks vital security models
like “least privilege”.

Escalation

Flat memory models enable

escalation & persistence of bugs by
uncontrolled writing to flash
memories.

Verification

Security verification impossible due

to the immense attack surface and
lack of secure interfaces between
system components.

Flat memory
models

Leakage

All your bases are belong to us –

thanks to leakage of device secrets
like identity keys or even class
secrets.

The 80’s called, and they want
their security model back

© ARM 2016 5

e

e

e

Point-solutions are easy to build for

microcontrollers, but hard to maintain
and to reason about. Abstractions are
hard to build, but allow to amortize
security verification across a large range
of devices.

For crypto APIs highly portable
abstractions are common now – yet OS
independence is not common for many
other security critical components.

Public key cryptography

Public-key crypto is absent from

many low end devices due to
memory and speed constraints.

Shortcuts

Vendors take compromises on

security to reduce footprint. Think
for example of commonplace class
key usage versus supporting key
provisioning and per-device secrets.

Communication

Less abstraction requires more

communication of limitations to
developers.
This usually results in higher level
components having wrong
assumptions about low level

components. Think of flash config
writing in the presence of a local
attacker. Be scared.

Resources
matter

Lack of abstraction
is expensive

© ARM 2016 6

e

Enter ARM mbed …

© ARM 2016 8

e

e

e

ARM mbed OS: architected platform security

mbed OS Communication Security

mbed OS
Connectivity

mbed OS
Device Security

Hardware Interfaces

ARM Cortex-M CPU

HW CryptoSensorsRadio

mbed uVisor

Update Trusted Library

mbed OS
Core

CMSIS-RTOS RTX

mbed OS API

Application Code mbed OS Component Libraries (400+)

Events Threads

Peripheral HAL

BLE
Stack

BLE
HCI

802.15.4
MAC

mbed
Nanostack

Thread

6LoWPAN

IP Stack

WiFi

Eth
MAC

WiFi
Stack

Ethernet

Sockets

BLE

Peripheral Drivers

CMSIS-Core

Profiles

Provision Trusted Library

mbed TLS Crypto Trusted Library

mbed
Cloud
Client

Connect Client

Provision Client

Update Client

TrustZone for ARMv8M

Peripherals

Cloud Client Infrastructure

Trusted HAL

Trusted Drivers

Root of Trust

Se
cu

ri
ty

 A
P
Is

Secure Storage

© ARM 2016 9

e

e

e Lifecycle security
mbed Cloud secure identity, config and update

Communication security
mbed TLS

Secure code compartments
mbed uVisor on ARMv7-M & ARMv8-M MPU

ARM mbed OS: architected platform security

© ARM 2016 10

e

e

e

mbed uVisor hypervisor:
Hardware security for microcontrollers

§ Enables compartmentalization of threads
and processes for microcontrollers.

§ Developed on github under Apache license.

§ mbed uVisor initialized first in boot process

§ Private stack and data sections.

§ Initialization of memory protection unit
(MPU) based on box permissions:
§ Whitelist approach – only required peripherals

are accessible to each box.

§ Each box has private .bss data and stack sections.

§ De-privileges execution, continues boot
unprivileged to initialize OS and libraries.

© ARM 2016 11

e System security model
for microcontrollers

© ARM 2016 12

e

e

e

mbed uVisor security

§ Security model for ARM Cortex v7M/v8M
microcontrollers compatible with Cortex A-class
and server operating systems like Linux.

§ mbed uVisor allocates protected per-box stacks
and detects under-/overflows during operation.

§ Public box memories accessible to all boxes for
backward compatible APIs.

§ Per-Box data sections are protected by default:
§ Secure per-box context memory, stack and heap.

§ Shared data/peripherals with other boxes on demand.

§ mbed uVisor code sections visible to everybody

§ Remaining flash memory is made available to the
system as a persistent storage pool.

§ Write access to flash is only allowed through APIs
of a dedicated flash-access box process.

© ARM 2016 13

e

e

e

Least privilege: Peripherals

§ Mutually distrustful security model:
§ “Principle of least privilege”

§ Boxes are protected against each other.

§ Boxes protected against malicious code from
broken system components, driver or other
boxes.

§ Per-box access control lists (ACL):
§ Restrict access to selected peripherals on a

“Need to use basis” for each box.

§ Public box peripherals are accessible to all boxes.

§ Hardware-enforced security sandboxes:
§ mbed uVisor manages box-specific ACLs and

reconfigures the MPU upon process switch.

© ARM 2016 14

e

e

e

Least privilege: Memories

§ Static box memories:
§ Boxes commit to heap/stack size of initial box

thread using the link time box configuration.

§ All global variables end up in the default box,
accessible to all boxes for backward compatibility.

§ The optional secure box context replaces secure
global variables. The context size is specified in
the box configuration macro.

§ Dynamic memories:
§ Each box requests large pages from mbed uVisor.

§ After usage pages are returned to mbed uVisor.

§ Secure box data must be copied across
boxes or placed into the public box.

Two-tier memory allocation

© ARM 2016 15

e

e

e

§ 1st tier page pool is handled by mbed uVisor.
Memory security is maintained on a per-page basis

§ The guest OS manages the 2nd tier for fine grained
allocations.

§ 2nd tier allocations are guaranteed to be continuous
for backward compatibility as long as they are
smaller than the page size.

§ mbed uVisor user mode libraries provide a default
implementation for the 2nd tier memory allocator.

§ The public box allocates pages from the bottom of
the page pool to enable continuous allocations.

§ Secure boxes allocate from the top of the pool.

§ The default page size is SRAM_SIZE divided 16, but
can be configured during compile time.

Pages for MMU-less systems
Two-tier memory allocation

© ARM 2016 16

e

e

e

§ Threads allocate stack and heap memories by
default in the thread owners box heap.

§ Short-lived high-memory threads like crypto
libraries get a custom heap for their allocator.

§ All 2nd-tier memory allocations are redirected
into thread-specific protected heaps:

§ Thread-specific heaps can be allocated on the
box heap.

§ Thread-heaps can optionally live in temporary
1st tier pages.

§ mbed uVisor switches to the correct thread
allocator upon thread switch.

§ On thread termination all thread-memories can
be released without fragmentation.

Defeating fragmentation

© ARM 2016 17

e “Hello world”
Application example

© ARM 2016 18

e

e

e

mbed uVisor peripheral sharing across boxes

§ main.cpp enables mbed uVisor and
configures the public heap size.

§ All global variables are accessible
to every box for backward
compatibility.

§ The access control list (ACLs) for
the public box is initialized to allow
access to non-security-critical
system peripherals by the core OS.

§ ACLs are white-listed – only listed
peripherals are accessible by the
public box.

https://github.com/ARMmbed/mbed-os-example-uvisor/blob/master/source/main.cpp

© ARM 2016 19

e

e

e

Set up public peripheral ACLs for the main box

github.com/ARMmbed/mbed-os-example-uvisor/blob/master/source/main-hw.h

§ ACLs are declared as arrays of
memory start address, peripheral
size and permissions.

§ Permissions must be either non-
overlapping between boxes or
marked as shared in all boxes.

§ Public peripherals are accessible
across all boxes and declared in
the public box through ACLs.

§ Memories can’t be shared
between secure boxes, only from
public to secure boxes.

© ARM 2016 20

e Secure multithreading
on CMSIS RTOS

© ARM 2016 21

e

e

e

Define thread in a dedicated security context

https://github.com/ARMmbed/mbed-os-example-uvisor/blob/master/source/led.cpp

§ Set box Namespace to NULL:

§ Later used for RPC communication.

§ Thread main heap is set to 8kb.

§ Register my_box_main as thread entry
point with normal priority.

§ Set stack size to default stack size.

§ Declare my_box_context type as
secure box context.

§ Declare name of this security context
to be my_box.

§ No additional ACL’s defined for
peripherals in constant access control
list (ACL).

© ARM 2016 22

e

e

e

Secure thread initialization

§ The my_box_main box entry point will be executed in the boxes security context
§ First of al the RawSerial UART class is created in the thread.
§ The memory allocation for the class creation is redirected to main thread heap and thus in a

memory that is exclusive to my_box_main.
§ Each process gets a uvisor_ctx pointer for free at the box-specific type of box_context.
§ Data stored in uvisor_ctx is exclusive to the active box.

https://github.com/ARMmbed/mbed-os-example-uvisor/blob/master/source/led.cpp

© ARM 2016 23

e Secure interrupt handling

© ARM 2016 24

e

e

e

Secure mbed uVisor interrupt API

https://github.com/ARMmbed/mbed-os-example-uvisor/blob/master/source/led.cpp

§ Interrupt ownership is exclusive –
multiple boxes cannot register for the
same interrupt.

§ Registration is based on first-come-
first-serve: sharing IRQ’s only possible
via custom box service APIs .

§ mbed uVisor remembers the
association between each Interrupt
handler and the box security context
during registration: other boxes can’t
use that interrupt until it is released.

§ Handlers are executed as unprivileged
C functions within the process that
registered the IRQ.

© ARM 2016 25

e Function calls
across security domains

© ARM 2016 26

e

e

e

RPC: secure remote procedure calls

https://github.com/ARMmbed/mbed-os-example-uvisor-number-store

§ mbed uVisor forwards calls to boxes

§ Both synchronous and asynchronous
secure RPC calls are supported.

§ UVISOR_BOX_RPC_GATEWAY_*
macros are used to declare valid API
entry points during compile time.

§ Entry points are tied to specific boxes.

§ Attackers can’t create new gateways or
change function/box associations during
runtime.

© ARM 2016 27

e

e

e

RPC: secure remote procedure calls

https://github.com/ARMmbed/mbed-os-example-uvisor-number-store

§ Callee verifies the caller
identity by resolving the
box namespace.

§ Verification result is cached.

§ Caller box-name can be
only defined during compile
time.

§ Callee can impose arbitrary
restrictions based on the
caller ID and the ownership
and origin of an object.

© ARM 2016 28

e

e

e

RPC: secure remote procedure calls

https://github.com/ARMmbed/mbed-os-example-uvisor-number-store

§ Callee waits in one or
more threads on
remote function calls.

§ Only one call executed
at a time per thread to
protect thread stack.

§ Remote call executed
thread-safe in waiting
thread.

§ Similar to Posix poll
function – callee waits
on array of function
pointers.

© ARM 2016 29

e

Securely shared
peripheral registers

© ARM 2016 30

e

e

e

Security-agnostic register level access functions

§ Fine grained peripheral access down to register/bit level:
§ Alternative method to peripheral ACL’s – mbed uVisor executes access on behalf of the box.

§ Multiple boxes can have access to selected bits in one register.

§ Perfectly suitable for shared GPIO and clock registers to stop interference and DoS.

§ Convenient portable wrapper functions:
§ SECURE_WRITE(address, value)

§ SECURE_READ(address)

§ SECURE_BITS_GET(address, mask)

§ SECURE_BITS_CHECK(address, mask)

§ SECURE_BITS_SET(address, mask)

§ SECURE_BITS_CLEAR(address, mask)

§ SECURE_BITS_SET_VALUE(address, mask, value)

§ SECURE_BITS_TOGGLE(address, mask)

github.com/mbedmicro/mbed/blob/master/hal/targets/cmsis/core_cmSecureAccess.h

© ARM 2016 31

e

e

e

Register level access security

github.com/mbedmicro/mbed/blob/master/features/FEATURE_UVISOR/includes/uvisor/api/inc/register_gateway.h

§ Limits access to specific register bits to
the specific caller boxes.

§ Call gateways only accepted by mbed
uVisor from flash memory:
§ Attacker has no write access to flash

controller, can’t make up new gateways.

§ Gateways verified during firmware
update or before firmware signing.

§ Metadata of register gateways at a fixed
offset from mbed uVisor gateway
context switch – a SVC supervisor call.
§ Contains pointer to register and access

mask, guaranteed verification latency for
cross-box calls.

© ARM 2016 32

e

mbed uVisor: Future outlook

© ARM 2016 33

e

e

e

mbed uVisor on TrustZone-M

§ ARM mbed uVisor application security model of TrustZone for ARMv8M is
source-compatible with the ARMv7-M security model.

§ Additionally TrustZone for ARMv8M enables bus level protection in hardware:
§ ARMv7-M requires software API filters for DMA access and other security critical operations.

§ ARMv8-M can filter for DMA access for requests initiated by unprivileged code on bus level.

§ TrustZone for ARMv8M MPU banking reduces complexity of secure target OS:
§ Secure OS partition owns a private MPU with full control.

§ OS keeps the privileged mode for fast IRQs.

§ Fast interrupt routing and register clearing in hardware.

§ Fast cross-box calls on TrustZone for ARMv8M – optimized call gateways.

© ARM 2016 34

e

e

e

Secure device services on TrustZone-M: SDS

§ Use hardware-accelerated security context
switching for low latency system services.
§ Secure Interrupt management

§ Secure GPIO access (pin-wise access)

§ Register Level / Bit Level access gateway

§ IPC

§ DMA-APIs

§ Shared Crypto Accelerators / Crypto API

§ Random Entropy Pool Drivers

§ Key Provisioning / Storage

§ Configuration Storage APIs

§ … and many more

© ARM 2016 35

e

e

e

§ Trusted messages contain commands, data or
firmware parts.

§ Box security not affected by communication
stack exploits or infections outside of trusted
box.

§ Payload delivery is agnostic of protocol stack.

§ Resilient box communication over the
available channels:
§ Ethernet, CAN-Bus, USB, Serial

§ Bluetooth, Wi-Fi, ZigBee, 6LoWPAN

Case study: Secure server communication

Exposed box with
communication stack

Decrypt
and verify
using
DTLS

GAP

Secured and trusted
device process

GATT

AP

BLE LL

Trusted box without
communication Stack

Opaque Block

Commands,
Data,

Firmware Blob

Opaque

Bluetooth
Communication

Stack

Ex
po

se
d

A
pp

lic
at

io
n

C
o
de

IoT Device owned by user.
Initial identity provisioned by System Integrator
Messages delivered agnostic of communication stack

© ARM 2016 36

e

e

e

§ Communication protected by mbed TLS.

§ Raw message payloads decrypted and
verified directly by protected code:
§ mbed TLS box not exposed to communication

protocol stack bugs.

§ No interference by other boxes.

§ Low attack surface.

§ Authentication and encryption keys are
protected against malware.

§ Malware can’t interfere without knowing the
encryption or signing keys.

Case study: Secure server communication

Exposed box with
communication stack

Decrypt
and verify
using
DTLS

TLS box handles
only the SSL protocol

Opaque BlockOpaque

Initial keys provisioned by System Integrator.
Messages decoded independent of stacks using
mbed TLS in separate security context

Ex
po

se
d

A
pp

lic
at

io
n

C
o
de

Decryption Keys

Decrypted BlockDecrypted

IP Stack

© ARM 2016 37

e

e

e

Case study: Secure remote firmware update

Exposed box with
communication stack

GAP

GATT

AP

BLE LL

Bluetooth
Communication

Stack

Flash interface box protected by mbed uVisor
– without own communication stack

C
us

to
m

 A
pp

lic
at

io
n

C
o
de

Opaque Block

IoT device owned by user,
Initial identity provisioned by System Integrator,
Messages delivered independent of stacks

Firmware
update blocks

FW005

Firmware Update Image

Secure Storage,
Firmware Update Blocks

Re-flash Untrusted
Application Upon Completion

Opaque

Secured and trusted
device process

Decrypt
and verify
using
DTLS

§ Delivery of firmware update must be
decoupled from a protocol-independent
firmware image verification.

§ Bugs in communication stacks or cloud
infrastructure must not compromise the
firmware update:
§ End-to-end security for firmware updates between

the firmware developer and the one secure box on
the device with exclusive flash-write-access ACLs.

§ Box with flash controller ACLs only needs the
public update key to verify validity of firmware.

§ Local malware can’t forge a valid firmware signature
to the firmware update box, the required private
firmware signature key is not in the device.

© ARM 2016 38

e

e

e

Case study: Controlled malware recovery

§ Secure box can remotely recover from malware:
§ Enforces communication through the exposed side to the server.

§ Receives latest security rules and virus behaviour fingerprints for
detection.

§ Shares detected pattern fingerprint matches with control server

§ Distributed detection of viruses and live infrastructure attacks.

§ Thanks to flash controller ACL restrictions, malware can’t modify
monitor code or install itself into non-volatile memories.

§ When communication with the server breaks for a
minimum time:
§ Parts of the device stack are reset to a known-good state.

§ Reset prevents malware from staying on the device.

§ Device switches to a safe mode to rule out network problems or to
remotely update the firmware via reboot if needed.

https://commons.wikimedia.org/wiki/File:Biohazard.svg

© ARM 2016 39

e

“The mantra of any good security engineer is: “Security is
not a product, but a process” It's more than

designing strong cryptography into a system; it's designing the entire system

such that all security measures, including cryptography, work together.”

– Bruce Schneier

Get the latest information on mbed security…
https://www.mbed.com/en/technologies/security/

... follow live mbed uVisor development on github.com:
https://github.com/ARMmbed/uvisor/
More presentations and in-depth OS-level integration
and porting documents can be found there as well.

Contact: Milosch Meriac <milosch.meriac@arm.com>

Thank you – Questions?

The trademarks featured in this presentation are

registered and/or unregistered trademarks of ARM

Limited (or its subsidiaries) in the EU and/or elsewhere.

All rights reserved.

All other marks featured may be trademarks of their

respective owners.

Copyright © 2016 ARM Limited

© ARM 2016 41

e

Support slide:
Getting started

© ARM 2016 42

e

e

e

uVisor: development basics
• uVisor debugging is platform independent via Semi-hosting. Please ensure

that your debugger of choice supports semihosting and that its turned on.
• Please use the secure threaded blinky example for starting uVisor

development.
• For release builds, please enter:

• mbed compile -m K64F_SECURE -t GCC_ARM –c

• When connecting a debugger, output can be seen on the debug console
with a debug build:
• mbed compile -m K64F_SECURE -t GCC_ARM -c -o

debug-info

• Debug Alternatives for NXP FRDM-K64F:

• OpenSDA Users Guide: Follow instructions for updating the boot
loader. The boot loader firmware image can be downloaded here.

• Ozone – J-Link compatible debugger, but CodeWarrior, Eclipse, Keil,
IAR, KDS should be fine, too.

• Serial console printf serial enabled at 9600 baud over CDC USB

serial interface of the K64F
• For porting uVisor to new platforms, please refer to our porting guide
• You can download a docker-based pre-configured uVisor development here
• Your device will freeze if your run a debug version of your app as it

will wait for a debugger to connect!

