Practical real-time
operating system security
for the masses

ARM Milosch Meriac

Principal Security Engineer
github.com/ARMmbed/uvisor

ARM TechCon
25th October 2016

©ARM 2016

Why is
security
so hard ?

ARM

Security
+ time
= comedy

If a product is successful,
it will be hacked

Who can’t suppress snickering on
seemingly dumb security bugs in other
people’s product!? It’s easy and delightful
to declare developers of failed products
as incompetent.

As old stuff has old bugs — we won'’t
run out of entertainment anytime soon.

©ARM 2016

Device lifetime

The security of a system is dynamic
over its lifetime. Lifetimes of home
automation nodes can be |0+ years.

Attack scale well

The assumption of being hacked at
some point requires a solid
mitigation strategy for simple,
reliable and inexpensive updates.
Do our defenses scale with our
attackers?

Assume you can’t prevent it

Value of bugs is expressed by value
= number_of installations x
device value. Increased value and
large deployments drive attackers -
especially in the loT.

Massively parallelized security
researchers/attackers vs. limited
product development budgets and
time frames.

Flat memory
models

The 80’s called, and they want
their security model back

A flat address space as the result of lack
of a memory management units (MMU)
does not justify the absence of security.
Many microcontrollers like ARM
Cortex-M3/M4 provide a hardware
memory protection unit (MPU) instead.

©ARM 2016

No separation

Flat memory models and ignorance
of MPUs blocks vital security models
like “least privilege”.

Escalation

Flat memory models enable
escalation & persistence of bugs by
uncontrolled writing to flash
memories.

Verification

Security verification impossible due
to the immense attack surface and
lack of secure interfaces between
system components.

Leakage

All your bases are belong to us —
thanks to leakage of device secrets
like identity keys or even class
secrets.

Resources
matter

Lack of abstraction
IS expensive

Point-solutions are easy to build for
microcontrollers, but hard to maintain
and to reason about.Abstractions are
hard to build, but allow to amortize
security verification across a large range
of devices.

For crypto APlIs highly portable
abstractions are common now — yet OS
independence is not common for many
other security critical components.

©ARM 2016

Public key cryptography

Public-key crypto is absent from
many low end devices due to
memory and speed constraints.

Shortcuts

Vendors take compromises on
security to reduce footprint. Think
for example of commonplace class
key usage versus supporting key
provisioning and per-device secrets.

Communication

Less abstraction requires more
communication of limitations to
developers.

This usually results in higher level
components having wrong
assumptions about low level
components. Think of flash config
writing in the presence of a local
attacker. Be scared.

Enter ARM

ARM

ity %uw@ .%m»mﬁm

ARM mbed OS: architected platform security

Application Code mbed OS Component Libraries (400+)

mbed OS API

mbed OS
Device Security

mbed OS
Connectivity

mbed OS Communication Security

mbed OS
Core

Hardware Interfaces

TrustZone for ARMv8M

ARM Cortex-M CPU

8 ©ARM 2016 ARM

ARM mbed OS: architected platform security

m Lifecycle security
mbed Cloud secure identity, config and update
‘ \ Communication security

mbed TLS

Secure code compartments
mbed uVisor on ARMv7-M & ARMv8-M MPU

9 ©ARM 2016 ARM

mbed uVisor hypervisor:
Hardware security for microcontrollers

= Enables compartmentalization of threads Exposed
. User Application Code
and processes for microcontrollers.

= Developed on github under Apache license.

Secured Services

= mbed uVisor initialized first in boot process Crypto API
= Private stack and data sections. eryS ID'

= Initialization of memory protection unit Exposed Operating
(MPU) based on box permissions: Sysiem Gode
= Whitelist approach — only required peripherals MPU or SAU %
are accessible to each box. Hardware Filter
= Each box has private .bss data and stack sections. USBI IUSART

= De-privileges execution, continues boot

unprivileged to initialize OS and libraries.
©ARM 2016 ARM

Secure Memory

Hardware

DMA

model
for microcontrollers

I ©ARM 2016 ARM

mbed uVisor security ”(sy " srart memor

uVisor protected OS/App .stack

e)\
Storage pool

OS/App .heap

= Security model for ARM Cortex v/M/v8M
microcontrollers compatible with Cortex A-class

N 7N/ N 7N 7
D72 N N N/ N

. . . OS/App .bss
and server operating systems like Linux.
N J
= mbed uVisor allocates protected per-box stacks - 0S/App .data
and detects under-/overflows during operation. L)
. . . uVisor protected
= Public box memories accessible to all boxes for (" osiamn B P
backward compatible APIs. code and .data Box n memories

initialization

= Per-Box data sections are protected by default:

Box i memories

= Secure per-box context memory, stack and heap.

= Shared data/peripherals with other boxes on demand. Box 1 memories

~
-
N) [

-

= mbed uVisor code sections visible to everybody

= Remaining flash memory is made available to the
system as a persistent storage pool.

Other RO-sections

= Write access to flash is only allowed through APIs
. tatic link/boot-
of a dedicated flash-access box process. Fime vector table

©ARM2016 =L JAN) ARM

increasing memory adresses
—_

/' ' '

_

:
:

Least privilege: Peripherals

= Mutually distrustful security model:
= “Principle of least privilege”
= Boxes are protected against each other.

= Boxes protected against malicious code from
broken system components, driver or other

boxes.

= Per-box access control lists (ACL):

= Restrict access to selected peripherals on a
“Need to use basis” for each box.

= Public box peripherals are accessible to all boxes.
= Hardware-enforced security sandboxes:

= mbed uVisor manages box-specific ACLs and
reconfigures the MPU upon process switch.

©ARM 2016

Grant access
per process

-
«

(
Active
Box 2 Process

~

reconfigures MPU

\
J

Peripheral Blocks
Memory Range

Private Peripherals

-

o

'kTI MER3

> TIMER4

fWireIess Engine
L

x X x 1 4 X 4 X

{Crypto Engine

DS S O o

{Flash Controller

.
/

Public Peripherals

N SA A A

{

{UARTO

-

—

N

\
Inactive R
Box 3 Process

Thread 9

14

Least privilege: Memories

Two-tier memory allocation

= Static box memories:

= Boxes commit to heap/stack size of initial box
thread using the link time box configuration.

= All global variables end up in the default box,
accessible to all boxes for backward compatibility.

= The optional secure box context replaces secure
global variables. The context size is specified in
the box configuration macro.

= Dynamic memories:
= Each box requests large pages from mbed uVisor.
= After usage pages are returned to mbed uVisor.

= Secure box data must be copied across
boxes or placed into the public box.

©ARM 2016

ccess
per process

Grant a

reconfigures MPU

\/
a N\
Active

Box 2 Process

Thread 5
Thread 6

Thread 7

Thread 8

—_

SRAM Memory h
4)
uVisor Memories
- {box 2 heap/stack -
O
N /
:) a N
Secure Pool Allocator Inactive \\
Box 3 Process
v {box 2 page } - —
—X =[box 1 page } ¥
e {box 2 page }‘ - —
V- =[box 2 page } HK—
I CI e
L J
R e
R
e s
_
/ N
Public Process
- {public memories\< — -
_ /
) ARM

Pages for MMU-less systems

Two-tier memory allocation

|5t tier page pool is handled by mbed uVisor.
Memory security is maintained on a per-page basis

The guest OS manages the 2" tier for fine grained
allocations.

2"d tier allocations are guaranteed to be continuous
for backward compatibility as long as they are
smaller than the page size.

mbed uVisor user mode libraries provide a default
implementation for the 2" tier memory allocator.

The public box allocates pages from the bottom of
the page pool to enable continuous allocations.

Secure boxes allocate from the top of the pool.

The default page size is SRAM_SIZE divided |6, but
can be configured during compile time.

©ARM 2016

SRAM memory

/

Secure Pool Allocator

. i

[_malloc'ed chunk |
& 4

box 2 page, 1% tier

P

box 4 page, 1% tier

malloc'ed chunk

[_malloc'ed chunk |~

malloc'ed chunk

malloc'ed chunk

| _malloc'ed chunk |

- |

/

\
box 3 page, 1% tier

S

\

4

/

-

box 2 page, 1% tier

malloc'ed chunk

malloc'ed chunk

\

|_malloc’ed chunk |

J

-

-
|_malloc'ed chunk |

4

ARM

Defeating fragmentation

» Threads allocate stack and heap memories by
default in the thread owners box heap.

= Short-lived high-memory threads like crypto
libraries get a custom heap for their allocator.

= All 2"-tier memory allocations are redirected
into thread-specific protected heaps:

= Thread-specific heaps can be allocated on the
box heap.

= Thread-heaps can optionally live in temporary
| tier pages.
= mbed uVisor switches to the correct thread
allocator upon thread switch.

= On thread termination all thread-memories can
be released without fragmentation.

©ARM 2016

/
Box 2 Process

Thread 5

Thread 7
Thread 8

~

SRAM memory

/

_

uVisor Memories

~
box 2 heap/stack

\

malloc'ed chunk
by Thread 5

malloc'ed chunk
by Thread 5

malloc'ed chunk

Thread 5

Stack Only

malloc'ed chunk

Thread 6

Heap

Stack

/

Secure Pool Allocator

a)
box 2 page, 1% tier

malloc'ed chunk

Heap

Thread 7

Stack

[malloc'ed chunk |

malloc'ed chunk

[malloc'ed chunk |
& 4

i)
box 2 page, 1% tier

malloc'ed chunk

Heap

Thread 8

Stack

N

Public Process

[public memories [[0 [O I:]j

ARM

€6 9

Application example

17 ©ARM20I16 ARM

mbed uVisor peripheral sharing across boxes

main.cpp enables mbed uVisor and #include "uvisor-1lib/uvisor-1lib.h

.) . 18 #include "mbed.h"
configures the public heap size. #include "main—hw. h

= All global variables are accessible
to every box for backward 21 /* Create ACLs for main box. x/

. 22 MAIN_ACL(g_main_acl);
compatibility.

= The access control list (ACLs) for 24 /* Enable uvisor. x*/

. e 25 UVISOR_SET_MODE_ACL(UVISOR_ENABLED, g_main_acl);
the public box is initialized to allow UVISOR SET PAGE HEAP(8x1824. 5):

access to non- SeCUI"It)’ -critical 27

system peripherals by the core OS. int main(void)

» ACLs are white-listed — only listed i

peripherals are accessible by the
public box.

DigitalOut led1(MAIN_LED);

oArM20l6 https://github.com/ARMmbed/mbed-os-example-uvisor/blob/master/source/main.cpp ARM

Set up public peripheral ACLs for the main box

#define MAIN_ACL(acl_list_name) \

ACLs are declared as arrays of

3: static const UvisorBoxAclItem acl_list_name[] = { \
memory start address, peripheral {SIM, sizeof(*SIM), UVISOR_TACLDEF_PERIPH}, \
size and permissions. 3t {0SC, sizeof(*0SC), UVISOR_TACLDEF_PERIPH}, \

36 {MCG, sizeof(#MCG), UVISOR_TACLDEF_PERIPH}, \

= Permissions must be either non- . {PORTA, sizeof(*PORTA), UVISOR_TACLDEF_PERIPH}, \
overlapping between boxes or 3¢ {PORTB, sizeof(*PORTB), UVISOR_TACLDEF_PERIPH}, \

, 3¢ {PORTC, sizeof(*PORTC), UVISOR_TACLDEF_PERIPH}, \

marked as shared in all boxes. | {PORTD, sizeof(*PORTD), UVISOR_TACLDEF_PERIPH}, \

= Public peripherals are accessible {PORTE, sizeof(*PORTE), UVISOR_TACLDEF_PERIPH}, \
, {RTC, sizeof(*RTC), UVISOR_TACLDEF_PERIPH}, \

across all boxes and declared in K {LPTMR®, sizeof (xLPTMR@), UVISOR_TACLDEF_PERIPH}, \
the public box through ACLs. {PIT, sizeof(*PIT), UVISOR_TACLDEF_PERIPH}, \

. , 15 {SMC, sizeof(*SMC), UVISOR_TACLDEF_PERIPH}, \

« Memories can’t be shared : {UARTQ, sizeof(*UART@), UVISOR_TACLDEF_PERIPH}, \
between secure boxes’ On|y from {12Co0, sizeof(xI2C0), UVISOR_TACLDEF_PERIPH}, \
{SPI@, sizeof(*SPI@), UVISOR_TACLDEF_PERIPH}, \

public to secure boxes. }

oArM16 github.com/ARMmbed/mbed-os-example-uvisor/blob/master/source/main-hw.h ARM

multithreading
NG NNENION

ARM

Define thread in a dedicated security context

= Set box Namespace to NULL:

- Later used for RPC communication, ** typedef struct {
. . InterruptIn * sw;
= Thread main heap is set to 8kb. pigitalout * led;
= Register my box_main as thread entry RawSerial * pc;

. . . . } my_box_context;
point with normal priority.

= Set stack size to default stack size. static const UvisorBoxAclItem acll] = {

= Declare my box_ context type as &

secure box context. static void my_box_main(const void x);

= Declare name of this security context

UVISOR_BOX_NAMESPACE (NULL);
to be my box.

UVISOR_BOX_HEAPSIZE(8192);

= No additional ACL’s defined for UVISOR_BOX_MAIN(my_box_main, osPriorityNormal, UVISOR_BOX_STACK_SIZE);
peripherals in constant access control UVISOR_BOX_CONFIG(my_box, acl, UVISOR_BOX_STACK_SIZE, my_box_context);
list (ACL).

oArM2016 https://github.com/ARMmbed/mbed-os-example-uvisor/blob/master/source/led.cpp ARM

Secure thread initialization

48 static void my_box_main(const void x)

0 /* allocate serial port to ensure that code in this secure box
* won't touch handle in the default security context when printing x/
RawSerial xpc;
if(!(pc = new RawSerial(USBTX, USBRX)))
return;
5 /* remember serial driver for IRQ routine x/

wun w wn U U (2 BN © » B

6 uvisor_ctx—>pc = pc;

* The my_box_main box entry point will be executed in the boxes security context

* First of al the RawSerial UART class is created in the thread.

* The memory allocation for the class creation is redirected to main thread heap and thus in a
memory that is exclusive to my_box_main.

= Each process gets a uvisor_ctx pointer for free at the box-specific type of box_context.

= Data stored in uvisor_ctx is exclusive to the active box.

n oeaMls https://github.com/ARMmbed/mbed-os-example-uvisor/blob/master/source/led.cpp ARM

Secure handling

23 ©ARM20I6 ARM

Secure mbed uVisor mterrupt API

/* allocate a box-specific switch handler x/
if(!(uvisor_ctx—>sw = new InterruptIn(Sw2)))

.. . pc—>printf("ERROR: failed to allocate memories for SW1\n");
= Interrupt ownership is exclusive —

else
multiple boxes cannot register for the 7 {
same interrupt. 71 /* register handler for switch SW1 x/
72 uvisor_ctx->sw->mode(PullUp);
= Registration is based on first-come- 73 uvisor_ctx->sw->fall(my_box_switch_irq);
first-serve: sharing IRQ’s only possible 7
via custom bOX service AP'S . 75 /* no problem to return here as everything is initialized */
7 return;
= mbed uVisor remembers the }

association between each Interrupt

. tatic void my_box_switch_irq(void
handler and the box security context static void my_box_switeh_irq(void)

38 {

during registration: other boxes can’t /x flip LED state %/

use that interrupt until it is released. 10 *uvisor_ctx->led = !xuvisor_ctx->led;

= Handlers are executed as unprivileged . /% print LED state on serial port %/

C functions within the process that 13 uvisor_ctx->pc->printf(

registered the |RQ }£ "\nPressed SW2, printing from interrupt - LED changed to %i\n\n",
15 (int) (xuvisor_ctx->led));
16 }

oArM20l6 https://github.com/ARMmbed/mbed-os-example-uvisor/blob/master/source/led.cpp ARM

Function
across security domains

25 ©ARM20I6 ARM

RPC: secure remote procedure calls

= mbed uVisor forwards calls to boxes = UVISOR_BOX RPC GATEWAY_ *

- Both synchronous and asynchronous macros are used to declare valid API
secure RPC calls are supported. entry points during compile time.
32 static uint32_t get_number(void): = Entry points are tied to specific boxes.
static int set_number(uint32_t number); = Attackers can’t create new gateways or
change function/box associations during
35 /% Box configuration x*/ runtime.

36 UVISOR_BOX_NAMESPACE(NULL);

37 UVISOR_BOX_HEAPSIZE(8192);

38 UVISOR_BOX_MAIN(number_store_main, osPriorityNormal, UVISOR_BOX_STACK_SIZE);
UVISOR_BOX_CONFIG(box_number_store, acl, UVISOR_BOX_STACK_SIZE, box_context);

/* Gateways x/
UVISOR_BOX_RPC_GATEWAY_SYNC (box_number_store, secure_number_get_number, get_number, uint32_t, void);
UVISOR_BOX_RPC_GATEWAY_ASYNC(box_number_store, secure_number_set_number, set_number, int, uint32_t);

2% ©arM216 https://github.com/ARMmbed/mbed-os-example-uvisor-number-store ARM

RPC: secure remote procedure calls

static int set_number(uint32_t number)

70 {
- Ca”ee veriﬁes the Ca”er 71 const int id = get_caller_id();
|dent|ty b)’ I"ESOIVing the 73 /* Cache the name verification result. This allows future checks to replace
b 7 * a relatively more expensive string compare with a cheaper integer
OX namespace° 75 % comparison. x/
. e . . 76 if (uvisor_ctx—>trusted_id == -1) {
8 Verlflcatlon reSUIt IS CaChed' 77 char name[UVISOR_MAX_BOX_NAMESPACE_LENGTH];
78 memset (name, 0, sizeof(name));
8 Ca”er bOX'name can be 79 uvisor_box_namespace(id, name, sizeof(name));
On|)' deflned durlng ComP||e 80 /* We only trust client a. */
. 81 static const char * trusted_namespace = "client_a";
time. 82 if (memcmp(name, trusted_namespace, sizeof(xtrusted_namespace)) == 0) {
. . uvisor_ctx—>trusted_id = id;
= Ca.”ee can Impose arbltrar)’ printf("Trusted client a has box id %u\n", id);
. . 85 } else {
restrictions based on the eturn 1
caller ID and the ownership .
and origin Of an ObjeCt. 89 if (uvisor_ctx->trusted_id != id) {
90 /* This box is not allowed to write to the secret number. x/
return 1;
}

27 ©ARM2016 https://github.com/ARMmbed/mbed-os-example-uvisor-number-store ARM

RPC: secure remote procedure calls

static void number_store_main(const void)

= Callee waits in one or ¢
105 /* Today we only allow client a to write to the number. x/
more th reads on uvisor_ctx->trusted_id = -1;
remOte funCt|on Ca”S. , /* The list of functions we are interested in handling RPC requests for x/

static const TFN_Ptr my_fn_array[] = {
(TFN_Ptr) get_number,
(TEN_Ptr) set_number

= Only one call executed
at a time per thread to

112 };
protect thread stack. e) <
» Remote call executed . int status;

i Iti 117 /* NOTE: This serializes all access to the number store! x/
thread-safe " Waltmg 118 status = rpc_fncall_waitfor(my_fn_array, 2, &uvisor_ctx->caller_id, UVISOR_WAIT_FOREVER);
thread. 119

120 if (status) {
] S|m||ar to Posix Po” pr%ntf("Failure is not an option.\r\n");
f . | | 't 122 uvisor_error (USER_NOT_ALLOWED) ;
unction — callee walits 123 }
. 12 }
on array of function 125}
pointers.

28 ©ARM2016 https://github.com/ARMmbed/mbed-os-example-uvisor-number-store ARM

Securely
peripheral registers

29 ©ARM20I6 ARM

30

Security-agnostic register level access functions

= Fine grained peripheral access down to register/bit level:
= Alternative method to peripheral ACL’s — mbed uVisor executes access on behalf of the box.
= Multiple boxes can have access to selected bits in one register.
= Perfectly suitable for shared GPIO and clock registers to stop interference and DoS.

= Convenient portable wrapper functions:

SECURE_WVRITE(address, value)

« SECURE_READ(address)

SECURE_BITS_GET(address, mask)
SECURE_BITS CHECK(address, mask)

« SECURE_BITS_SET (address, mask)

SECURE_BITS CLEAR(address, mask)
SECURE_BITS_SET_ VALUE(address, mask, value)

- SECURE_BITS_TOGGLE(address, mask)

©ARM 2016 github.com/mbedmicro/mbed/blob/master/hal/targets/cmsis/core cmSecureAccess.h

ARM

31

Register level access security

119 #define uvisor_write(box_name, shared, addr, val, op, msk) \
/* Instanstiate the gateway. This gets resolved at link-time. %/ \

= Limits access to specific register bits to=
the specific caller boxes. e oncate. = NTSOR.SVC_ OPCODE(NASOR, Ve T RECTETER, GATBMRYT . v

.branch = BRANCH_OPCODE(__UVISOR_OFFSETOF(TRegisterGateway, branch), \
__UVISOR_OFFSETOF(TRegisterGateway, bxlr)), \
UVISOR_REGISTER_GATEWAY_MAGIC, \

= Call gateways only accepted by mbed magic

o .box_ptr : (uint32_t) & box_name ## _cfg_ptr, \
UV|Sor from fIaSh memory: 28 .address = (uint32_t) addr, \
129 .mask = msk, \
. . i = _RGW_OP(op, sizeof(xaddr), shared),
= Attacker has no write access to flash O\ oriop, sizeotlraddr), shared), 4
BN

controller, can’t make up new gateways. 13: \

/* Pointer to the register gateway we just created. The pointer is

13 M M * located in a discoverable linker section. */ \
- Gatewa’ys verlfled durlng flrmware __attribute__((section(".keep.uvisor.register_gateway_ptr"))) \
. R . 137 static uint32_t const register_gateway_ptr = (uint32_t) ®ister_gateway; \
update or before firmware signing. 136 (void) resister_gatevay_pirs \
o N /* Call the actual gateway.
u Metadata Of reglster gateways at a flxed 1 * The value is passed as the first argument. x/ \
142 ((void (x)(uint32_t)) ((uint32_t) ((uint32_t) ®ister_gateway | 1)))((uint32_t) (val)); \

offset from mbed uVisor gateway
context switch —a SVC supervisor call.

= Contains pointer to register and access
mask, guaranteed verification latency for
cross-box calls.

©ARM 2016 github.com/mbedmicro/mbed/blob/master/features/FEATURE_UVISOR/includes/uvisor/api/inc/register sateway.h ARM

: Future outlook

32 ©ARM20I6 ARM

mbed uVisor on TrustZone-M

= ARM mbed uVisor application security model of TrustZone for ARMv8M is
source-compatible with the ARMv7-M security model.

= Additionally TrustZone for ARMv8M enables bus level protection in hardware:
= ARMv7-M requires software API filters for DMA access and other security critical operations.
= ARMvV8-M can filter for DMA access for requests initiated by unprivileged code on bus level.

= TrustZone for ARMv8M MPU banking reduces complexity of secure target OS:
= Secure OS partition owns a private MPU with full control.
= OS keeps the privileged mode for fast IRQs.
= Fast interrupt routing and register clearing in hardware.
= Fast cross-box calls on TrustZone for ARMv8M — optimized call gateways.

33 ©ARM20I6 ARM

34

Secure device services on TrustZone-M: SDS

= Use hardware-accelerated security context
switching for low latency system services.

Secure Interrupt management
Secure GPIO access (pin-wise access)

Unprivileged

Register Level / Bit Level access gateway
IPC

DMA-APIs

Shared Crypto Accelerators / Crypto API
Random Entropy Pool Drivers

Key Provisioning / Storage

Privileged

Configuration Storage APIs
... and many more

©ARM 2016

Non-Secure

Secure

Data

Privileged
Box Code

Privileged
Interrupt routines

Unprivileged
Box Code

Data

35

Case study: Secure server communication

= Trusted messages contain commands, data or

firmware parts. i
= Box security not affected by communication
stack exploits or infections outside of trusted

box. .
= Payload delivery is agnostic of protocol stack.

= Resilient box communication over the |
available channels: | Exposed box with

-l Opaque Block

Decrypt
and verify
using
DTLS

Commands,
Data,
Firmware Blob

Secured and trusted
device process

Trusted box without

communication Stack

communication stack
= Ethernet, CAN-Bus, USB, Serial
= Bluetooth,Wi-Fi, ZigBee, 6LoVWPAN

©ARM 2016

. loT Device owned by user.
Initial identity provisioned by System Integrator
Messages delivered agnostic of communication stack

ARM

36

Case study: Secure server communication

Communication protected by mbed TLS.

Raw message payloads decrypted and
verified directly by protected code:

= mbed TLS box not exposed to communication
protocol stack bugs.

= No interference by other boxes.

= Low attack surface.

Authentication and encryption keys are
protected against malware.

Malware can’t interfere without knowing the
encryption or signing keys.

©ARM 2016

1
1

Opaque

IP Stack

Decrypted

Exposed box with
communication stack

s

Opaque Block

Decryption Keys

Decrypt
and verify
using
DTLS

\ 4

Decrypted Block

TLS box handles

only the SSL protocol

i Initial keys provisioned by System Integrator.
Messages decoded independent of stacks using
mbed TLS in separate security context

ARM

Case study: Secure remote firmware update

Re-flash Untrusted
Application Upon Completion

= Delivery of firmware update must be

decoupled from a protocol-independent e [e ——
firmware image verification. Decrypt
and verify
= Bugs in communication stacks or cloud using
infrastructure must not compromise the -
firmware update: update blocks
FWO005 >
= End-to-end security for firmware updates between Secured and trusted Secure Storage,
the firmware developer and the one secure box on dovice proces: | | Tirmware pcate Bocs
. . . . i Exposed box with Flash interface box protected by mbed uVisor
the device with exclusive flash-write-access ACLs. | | communication stack | - without own communication stack
= Box with flash controller ACLs only needs the loT device owned by user,
public update key to verify validity of firmware. | Morsases oo e ot s

= Local malware can’t forge a valid firmware signature
to the firmware update box, the required private
firmware signature key is not in the device.

37 ©ARM20I6 ARM

Case study: Controlled malware recovery

= Secure box can remotely recover from malware:

= Enforces communication through the exposed side to the server.

= Receives latest security rules and virus behaviour fingerprints for
detection.

= Shares detected pattern fingerprint matches with control server
= Distributed detection of viruses and live infrastructure attacks.
= Thanks to flash controller ACL restrictions, malware can’t modify
monitor code or install itself into non-volatile memories.

= When communication with the server breaks for a
minimum time:
= Parts of the device stack are reset to a knOW"'SOOd state. https://commons.wikimedia.org/wiki/File:Biohazard.svg
= Reset prevents malware from staying on the device.

= Device switches to a safe mode to rule out network problems or to
remotely update the firmware via reboot if needed.

38 ©ARM20I6 ARM

‘¢
“The mantra of any good security engineer is:

’9
It's more than
designing strong cryptography into a system; it's designing the entire system

such that all security measures, including cryptography, work together.”

— Bruce Schneier

39 ©ARM20I6 ARM

ARM

Thank you — Questions!?

Get the latest information on mbed security...
https://www.mbed.com/en/technologies/security/

.. follow live mbed uVisor development on github.com:
https://github.com/ARMmbed/uvisor/

More presentations and in-depth OS-level integration
and porting documents can be found there as well.

Contact: Milosch Meriac <milosch.meriac@arm.com>

The trademarks featured in this presentation are
registered and/or unregistered trademarks of ARM
Limited (or its subsidiaries) in the EU and/or elsewhere.
All rights reserved.

All other marks featured may be trademarks of their

respective owners.

Copyright © 2016 ARM Limited

Support slide:

41 ©ARM 2016 ARM

42

uVisor: development basics

* uVisor debugging is platform independent via Semi-hosting. Please ensure
that your debugger of choice supports semihosting and that its turned on.

* Please use the secure threaded blinky example for starting uVisor
development.
* For release builds, please enter:

mbed compile -m K64F SECURE -t GCC ARM -c

* When connecting a debugger, output can be seen on the debug console
with a debug build:

mbed compile -m K64F SECURE -t GCC ARM -c -o
debug-info

* Debug Alternatives for NXP FRDM-K64F:

OpenSDA Users Guide: Follow instructions for updating the boot
loader. The boot loader firmware image can be downloaded here.
Ozone — |J-Link compatible debugger, but CodeWarrior, Eclipse, Keil,

AR, KDS should be fine, too.
Serial console printf serial enabled at 9600 baud over CDC USB

serial interface of the K64F

* For porting uVisor to new platforms, please refer to our porting guide

* You can download a docker-based pre-configured uVisor development here
* Your device will freeze if your run a debug version of your app as it

will wait for a debugger to connect!

©ARM 2016

4 B Thu0339 Q

@ Chrome File Edit View History Bookmarks People Window Help QW m

CRR A%

Call Stack X |/ gpio_apic X Y Digtalouth X Y rMemory.c X Y romalloc_wrapper.c X Y Tedlcpp X) maincop X ~ | Disassembly x
Function Line File File Scope S f main 3 | (S s
@ main 38 mancp 19 #include "rtos. 90013C82 _BoB3
__vrap_main 504 rewrget.cop 20 #include "main hw.h" ‘(iprmtf " Freees Threaded bTIAl

L 2 00013C84 4806

22/« Create ACLs for main box. ¥/ *_semicss _Frarat bl

23 MAIN_ACL (g_main_acl); size_t count =

2 aoatscon 2300 oy

00013C8C 9301

2
26 /* Register privieged systen IRQ hooks. */ ‘[7yln(f AT Toop caunts M\
o 13C8E 980

27 void SVC_Handler (void); 0001
28 Void Pendsy, Handler (void); eiaas e o
29 void SysTick_Handler (void); ana13ra> ooa1 <To
30
31 UVISOR_SET_PRIV_SYS_IRQ_HOOKS (SVC_Handler , PendsV_Handler , SysTick Wandler); R
33/« Enable wisor. Name Value
34 UVISOR_SET_MODE_/ ACL (UVISOR_ENABLED , g_main_acl); |5 am Curr. CPU Regs
2 0 0x0001CB08
Call Graph @ main x ptimainlvaid) RL 0x80088038
(Corintt ¥ —{Tock__+) pnnw'\r\nmu tnreeﬁed blmky uvisor-rtos examp\e s AN)} R2 0x07270E00
RO, [PC, 8] R3 000000000
5 GoviacesFRaPEaOL B owiscer ‘printts B e
39
" ' ox00000000
) B[suer odm 3 0x00000000
2 Q28 while (1) R7 000000000
P A § w8 0x00000090
S et (e loop conts BN, comnten); = 56000808
o R10 0x00000000
puts 47 return 0; R11 ©x00000000
Memoryl @ 0 X | Terminal x

00000000 8
00000008 15
00000010 15
00000018 15
90000020 00
00000028 00
00000030 15
00000038 AF
90000040 2D
00000048 35
00000050 3
00000058 45
00000060 4D
90000068 55

0 50

22 Disabled output of control characters

> Senihosting 10 activ

uvisor mode

iser_Tan ! GoxFrFoado (8152 bytes) [config]

{oxarrrodno (8192 byces) (Linker]
X1FFFO000-0x1FFF2400 8216, acl=0x0030)

OxIFFTEdSD-0x20050000 (s1se-203615, acl-0x037)

men_acl[0]:

box[8] ACL list: !
ctx=d4 stack=

@0x40047000 siz X0ABG [[not available]]
ATPS base 0x40047000

File Edit View Debug Help o @m =y
@, Ozone - The J-Link Debugger V2.16 - /L i i T

Functions X _|[gpio_apic XY Digitalouth X Y riMemory.c X) rix_malloc_wrapper.c X Y ledLcpp X \ maincpp X ~ |Disassembly x

Name A nstrs. File File Scope S| f ledi_main —

® _address wiite 55 secure_access. uvisor_ctx ->toggle = luvisor_ctx-> toggle oV

& _address_write 32 secure access. free (enory); BL

[__address_write [] secure_access. i Hov

® _address_wiite 3 secure_access. 4

address_wiite] secure access. | tic void ledl_main (const void x) oy
Zaddress_write] secure_access. Hov
® _address_wiite] seare sccess, | Dlitalout dedt (1e); uxTe

@ _address wite O seawreaccess | yisor cix>thread? = new Thread (run 1 b0

[# _address_write [] secure_access. uwvisor_ctx ->thread3 = new Thread (run_1 o

® _address_wiite] secure_access. ov

® address_wiite o secure access. | while (1) { 00013818 FFSGF7FF_ BL

& _address_write 32 secure access. vold's nesory ;

@ _ClRex L core_cminserH Ted1 = tled1; Registers @ led1_main x
ez 4 rHALCMA |® Q0013AFC AB04 o0 R, 5P, #16 Name Value
Zoxa_pure,virtual 3 retarget.cpp Q0BLIAFE 4618 [Ro, R3

& _disable_irq 1 core_cmFunct SwOLk00 FETOFFE BL - Oc30Ed <operator nt> 5 = Curr. CPU Regs

& _disable_irq 1 core. cFunck 00013804 B3, RO) 0x00000000
—disable 1 Z <] RL OxIFFF30OC
® _disable_irg z core_cmFunc.t M R @ SHIFFFIDF
o R3 0x00000000

SoreRiER X Ue R, R3 Re OxIFFF359C

File A Status nstrs. Address MV R, R ”s 0x00000000
4 Interruptincpp compiled 0 0000000 AD - R3, SP, #16 R 0x00000000
* interruptinhincluded 0 oo oReR &7 0x00000000
inh included 0 Bl OXI39C8 <operator=> "8 0x00000000
included 0 RO 0x00000000
compiled | 64 000134 RI0 0x00000000
compiled | 26 0001388 RIL 0x00000000
compiled | 26 00013C1 | R12 0x00011740
included 0 R13 Ox1FFF2030
R14 0x0000AD71

X [Terminal x

00000000 EQ A4 eoug.StepU >> Disabled output of control characters
00000004 CO
00000008 15

)

15

CPU halted Ln0 ChO | Connected @ 1 MHz

